- Current issues of national and international importance relating to social, economic and ٠ industrial development
- Engineering Aptitude covering Logical reasoning and Analytical ability •
- Engineering Mathematics and Numerical Analysis •
- General Principles of Design, Drawing, Importance of Safety
- Standards and Quality practices in production, construction, maintenance, and services •
- Basics of Energy and Environment: Conservation, environmental pollution, and degradation, • Climate Change, Environmental impact assessment
- Basics of Project Management 8. Basics of Material Science and Engineering •
- Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology-based education.

Topics	Paper 1 Civil Engineering Syllabus	
Structural Analysis	Basics of strength of materials, Types of stresses and strains, Bending moments and shear	
	force, the concept of bending and shear stresses; Analysis of determinate and indeterminate	
	structures, Rolling loads, Influence Lines, Unit load method & other methods; Free and Forced	
	vibrations of single degree and multi-degree freedom system; Suspended Cables; Concepts	
	and use of Computer-Aided Design	
Solid Mechanics	Elastic constants, Stress, plane stress, Strains, plane strain, Mohr's circle of stress and strain,	
	Elastic theories of failure, Principal Stresses, Bending, Shear and Torsion	

Ethics and values in the Engineering profession.

concrete design

To

structures

Building Materials	Stone, Lime, Glass, Plastics, Steel, FRP, Ceramics, Aluminum, Fly Ash, Basic Admixtures, Timber,
	Bricks and Aggregates: Classification, properties and selection criteria; Cement: Types
Design of Concrete	Limit state design for bending, shear, axial compression and combined forces; Design of
and Masonry	beams, Slabs, Lintels, Foundations, Retaining walls, Tanks, Staircases; Principles of pre-stressed

Design of Steel	Principles of Working Stress methods, Design of tension and compression members, Design of		
Structures	beams and beam-column connections, built-up sections, Girders, Industrial roofs, Principle		
	Ultimate load design		
Construction	Construction - Planning, Equipment, Site investigation and Management including Estimation		
Practice, Planning	with latest project management tools and network analysis for different Types of works;		
and Management	Analysis of Rates of various types of works; Tendering Process and Contract Management,		
	Quality Control, Productivity, Operation Cost; Land acquisition; Labour safety and welfare		

Topics	Paper 2 Civil Engineering Syllabus	
Flow of Fluids,	Fluid Mechanics, Open Channel Flow, Pipe Flow, Hydraulic Machines and Hydropower	
Hydraulic Machines		
and Hydro Power		
Hydrology and Water	Hydrological cycle, Ground water hydrology, Well hydrology and related data analysis;	
Resources Engineering	Streams and their gauging; River morphology; Flood, drought, and their management;	
	Capacity of Reservoirs. Water Resources Engineering: Multipurpose uses of Water, River	
	basins and their potential; Irrigation systems, water demand assessment; Resources, canal	
	and drainage design, Gravity dams, falls, weirs, Energy dissipators, barrage Distribution	
	works, Cross drainage works and head-works and their design; Concepts in canal design,	
	construction & maintenance; River training, measurement, and analysis of rainfall.	
Environmental	Water Supply Engineering, Waste Water Engineering, Solid Waste Management, Air, Noise	
Engineering	pollution, and Ecology	
Geotechnical	Geo-technical Engineering: Soil exploration - planning & methods, Properties of soil,	
Engineering and	classification, various tests and inter-relationships; Permeability & Seepage, Compressibility,	
Foundation	consolidation, and Shearing resistance, Earth pressure theories and stress distribution in	
Engineering	Properties and uses of geo-synthetics.	
	Foundation Engineering: Types of foundations & selection criteria, bearing capacity,	
	settlement analysis, design and testing of shallow & deep foundations; Slope stability	

	analysis, Earthen embankments, Dams, and Earth retaining structures: types, analysis and		
	design, Principles of ground modifications.		
Surveying and Geology	Classification of surveys, various methodologies, instruments & analysis of measurement of		
	distances, elevation, and directions; Field astronomy, Global Positioning System; Map		
	preparation, Survey Layout for culverts, canals, bridges, road/railway alignment, and		
	buildings, Setting out of Curves.		
	Basic knowledge of Engineering geology & its application in projects		
Transportation	Highways - Planning & construction methodology, Alignment, and geometric design; Traffic		
Engineering	Surveys and Controls		
	Railways Systems – Terminology, Planning, designs, and maintenance practices; track		
	modernization.		
	Harbours – Terminology, layouts and planning. Airports – Layout, planning & design.		
	Tunnelling - Alignment, methods of construction, disposal of muck, drainage, lighting, and		
	ventilation.		

Topics	Paper 1 Electronics and Telecommunication Engineering Syllabus			
Basic Electronics	Basics of semiconductors, Junction & Field-Effect Transistors, Transistor amplifiers of different			
Engineering	types, oscillators, and other circuits; Basics of Integrated Circuits (ICs); Bipolar, MOS and CMOS			
	ICs, Optical sources/detectors			
Analog and Digital	Small signal equivalent circuits of diodes, Active filters, timers, multipliers, waveshaping, A/D			
Circuits	D/A converters; Boolean Algebra & uses; Logic gates, Digital IC families,			
	Combinatorial/sequential circuits, BJTS, and FETs, Analysis/design of amplifier single/multi-			
	stage			
Network Theory	Network graphs & matrices; Wye-Delta transformation; Linear constant coefficient differential			
	equations- time-domain analysis of RLC circuits; 26 Solution of network equations using			

	Laplace transforms- frequency domain analysis of RLC circuits; 2-port network parameters,	
	State equations for networks; Steady state sinusoidal analysis.	
Materials Science	Electrical Engineering materials; Crystal structure & defects; Ceramic materials-structures,	
	composites, processing and uses; Insulating laminates for electronics, structures, properties	
	and uses; Magnetic materials, basics, classification, ferrites, Ferro/para-magnetic materials	
	and components; Nano materials-basics, preparation, purification, sintering, nanoparticles and	
	uses; Nano-optical/magnetic/electronic materials	
Electronic	Principles of measurement, accuracy, precision, and standards; Analog and Digital systems for	
Measurements and	measurement, measuring instruments for different applications; Static/dynamic	
Instrumentation	characteristics of measurement systems, errors, statistical analysis and curve fitting;	
	Measurement systems for non-electrical quantities; Basics of telemetry; Different types of	
	transducers and displays; Data acquisition system basics	
Basic Electrical	DC circuits ohm's & Kirchoff's laws, mesh and nodal analysis, circuit theorems;	
Engineering	Electromagnetism, Faraday's & Lenz's laws, induced EMF and its uses; Single-phase AC	
	circuits; Transformers, efficiency; Basics-DC machines, induction machines, and synchronous	
	machines; Electrical power sources	

Topics	Paper 2 Electronics and Telecommunication Engineering Syllabus			
Advanced Electronics	VLSI technology: Processing, lithography, interconnects, packaging, testing; VLSI design:			
Topics	Principles, MUX/ROM/PLA-based design, Moore & Mealy circuit design; Pipeline concepts &			
	functions; Design for testability, examples; DSP: Discrete-time signals/systems, uses; Digital			
	filters: FIR/IIR types, design, speech/audio/radar signal processing uses; Microprocessors &			
	microcontrollers, basics, interrupts, DMA, instruction sets, interfacing; Controllers & uses;			
	Embedded systems.			
Control Systems	Classification of signals and systems; Application of signal and system theory; System			
	realization; Transforms & their applications; Signal flow graphs, Routh-Hurwitz criteria, root			
	loci, Nyquist/Bode plots; Feedback systems-open & close loop types, stability analysis, steady-			

	state, transient and frequency response analysis; Design of control systems, compensators,		
	elements of lead/lag compensation, PID and industrial controllers.		
Advanced	Communication Networks: Principles /practices /technologies /uses /OSI model/security; Basic		
Communication	packet multiplexed streams/scheduling; Cellular networks, types, analysis, protocols		
Topics	(TCP/TCPIP)		
	Microwave & satellite communication: Terrestrial/space type LOS systems, block schematics		
	link calculations, system design; Communication satellites, orbits, characteristics, systems,		
	uses; Fibre-optic communication systems, block schematics, link calculations, system design.		
Analog and Digital	Random signals, noise, probability theory, information theory; Analog versus digital		
Communication	communication & applications: Systems- AM, FM, transmitters/receivers, theory/practice/		
Systems	standards, SNR comparison; Digital communication basics: Sampling, quantizing, coding, PCM,		
	DPCM, multiplexing-audio/video; Digital modulation: ASK, FSK, PSK; Multiple access: TDMA,		
	FDMA, CDMA; Optical communication: fibre optics, theory, practice/standards.		
Electro Magnetics	Elements of vector calculus, Maxwell's equations-basic concepts; Gauss', Stokes' theorems;		
	Wave propagation through different media; Transmission Lines-different types, basics, Smith's		
	chart, impedance matching/transformation, S- parameters, pulse excitation, uses; Waveguides-		
	basics, rectangular types, modes, cut-off frequency, dispersion, dielectric types; Antennas-		
	radiation pattern, monopoles/dipoles, gain, arrays-active/passive, theory, uses.		
Computer	Basic architecture, CPU, I/O organisation, memory organisation, peripheral devices, trends;		
Organization and	Hardware /software issues; Data representation & Programming; Operating systems-basics,		
Architecture	processes, characteristics, applications; Memory management, virtual memory, file systems,		
	protection & security; Databases, different types, characteristics, and design; Transactions and		
	concurrency control; Elements of programming languages, typical examples.		

н	n	nı	20	
	~	יש	00	

Paper 1 Electrical Engineering Syllabus

Engineering	Matrix theory, Eigen values & Eigen vectors, system of linear equations, Numerical methods for
Mathematics	the solution of non-linear algebraic equations and differential equations, probability and
	statistics fundamentals, Sampling theorem, random variables, Normal and Poisson distributions,
	correlation and regression analysis, integral calculus, partial derivatives, maxima and minima,
	Line, Surface and Volume Integrals. Fourier series, linear, non-linear and partial differential
	equations, initial and boundary value problems, complex variables, Taylor's and Laurent's series,
	residue theorem
Electrical Materials	Electrical Engineering Materials, crystal structures, and defects, ceramic materials, insulating
	materials, magnetic materials – basics, properties and applications; ferrites, ferromagnetic
	materials, and components; basics of solid-state physics, conductors; Photo-conductivity; Basics
	of Nano materials and Superconductors.
Electric Circuits and	Circuit elements, network graph, KCL, KVL, Node, and Mesh analysis, ideal current and voltage
Fields	sources, Thevenin's, Norton's, Superposition and Maximum Power Transfer theorems, transient
	response of DC and AC networks, Sinusoidal steady-state analysis, and spherical charge
	distributions, Ampere's and Biot-Savart's laws; inductance, dielectrics, capacitance; Maxwell's
	equations, basic filter concepts, two-port networks, three-phase circuits, Magnetically coupled
	circuits, Gauss Theorem, electric field and potential due to point, line, plane
Electrical and	Principles of measurement, accuracy, precision, and standards; Bridges and potentiometers;
Electronic	moving coil, moving iron, dynamometer and induction type instruments, Basics of sensors,
Measurements	Transducers, basics of data acquisition systems, measurement of voltage, current, power,
	energy and power factor, instrument transformers, digital voltmeters and multimeters, phase,
	time and frequency measurement, Q-meters, oscilloscopes, potentiometric recorders, error
	analysis
Computer	Parinharal devices, data representation and programming, basics of Operating system, and
Eundamontals	networking virtual memory file systems: Elements of programming languages, typical
runuamentais	avenues. Number systems, Declean elgebre, exitematic functions, Decie Architecture, Control
	examples, Number systems, Boolean algebra, antimetic functions, Basic Architecture, Central
	Processing Unit, I/U and Memory Organisation
Basic Electronics	Basics of Semiconductor diodes and transistors and characteristics, Junction and field-effect
Engineering	transistors (BJT, FET, and MOSFETS), different types of transistor amplifiers, equivalent circuits
	and frequency response; oscillators and other circuits, feedback amplifiers.

Topics	Paper 2 Electrical Engineering Syllabus
Analog and	Microprocessor basics- interfaces and applications, basics of linear integrated circuits; Analog
Digital	communication basics, Modulation, and demodulation, noise and bandwidth, transmitters and
Electronics	receivers, signal to noise ratio, digital communication basics, sampling, quantizing, coding, frequency
	and time domain multiplexing, power line carrier communication systems, Operational amplifiers,
	combinational and sequential logic circuits, multiplexers, multivibrators, sample and hold circuits,
	A/D and D/A converters, basics of filter circuits and applications, simple active filters
Systems and	Representation of continuous and discrete-time signals, Shifting and scaling operations, linear, time-
Signal	invariant and causal systems, Discrete Fourier transform, FFT, linear convolution, discrete cosine
Processing	transform, FIR filter, IIR filter, bilinear transformation, Fourier series representation of continuous
	periodic signals, sampling theorem, Fourier and Laplace transforms, Z transforms
Control	Routh-Hurwitz criterion, Nyquist techniques, Bode plots, root loci, lag, lead and lead-lag
Systems	compensation, stability analysis, transient and frequency response analysis, state-space model, state
	transition matrix, controllability and observability, linear state variable feedback, PID and industrial
	controllers, Principles of feedback, transfer function, block diagrams and signal flow graphs, steady-
	state errors, transforms and their applications;
Electrical	Single-phase transformers, three-phase transformers - connections, parallel operation, auto-
Machines	transformer, energy conversion principles, DC machines, generator characteristics, armature
	reaction and commutation, starting and speed control of motors, Induction motors, Synchronous
	machines
Power Systems	Matrix representation of power systems, load flow analysis, voltage control and economic operation,
	System stability concepts, Swing curves and equal area criterion. HVDC transmission and FACTS
	concepts, Concepts of power system dynamics, Basic power generation concepts, steam, gas and
	water turbines, transmission line models and performance, cable performance, insulation, corona,

	and radio interference, power factor correction, symmetrical components, fault analysis, principles
	of protection systems, basics of solid-state relays and digital protection; Circuit breakers, Radial and
	ring-main distribution systems, distributed generation, solar and wind power, smart grid concepts,
	environmental implications, fundamentals of power economics.
Power	Semiconductor power diodes, transistors, thyristors, triacs, GTOs, MOSFETs and IGBTs, principles of
Electronics and	choppers and inverters, basic concepts of adjustable speed DC and AC drives, DC-DC switched-mode
Drives	converters, DC-AC switched-mode converters, resonant converters, high-frequency inductors and
	transformers, power supplies.

Topics	IES Mechanical Engineering Syllabus
Fluid Mechanics	Basic Concepts and Properties of Fluids, Manometry, Fluid Statics, Buoyancy, Equations of
	Motion, Bernoulli's equation and applications, Viscous flow of incompressible fluids, Laminar
	and Turbulent flows, Flow through pipes and head losses in pipes.
Power Plant	Rankine and Brayton cycles with regeneration and reheat, Fuels and their properties, Flue gas
Engineering	analysis, Boilers, steam turbines and other power plant components like condensers, air
	ejectors, electrostatic precipitators and cooling towers
IC Engines,	Vapour compression refrigeration, Refrigerants, and Working cycles, Compressors,
Refrigeration and Air	Condensers, Evaporators and Expansion devices, SI and CI Engines, Engine Systems and
conditioning	Components, Performance characteristics, and testing of IC Engines; Fuels; Emissions and
	Emission Control. Other types of refrigeration systems like Vapour Absorption, Vapour jet,
	thermoelectric, and Vortex tube refrigeration. Psychometric properties and processes,
	Comfort chart, Comfort and industrial air conditioning, Load calculations, and Heat pumps.

Turbo Machinery	Reciprocating and Rotary pumps, Pelton wheel, Kaplan and Francis Turbines, velocity
	diagrams, Impulse and Reaction principles, Steam and Gas Turbines, Theory of Jet Propulsion,
	Rotary Compressors
Renewable Sources of	Plate and focusing collectors their materials and performance. Solar Thermal Energy Storage,
Energy	Applications, Bio-mass and Tidal Energy
Thermodynamics and	Thermodynamic systems and processes; properties of pure substance; Zeroth, First and
Heat transfer	Second Laws of Thermodynamics; Entropy, Irreversibility, and availability; analysis of
	thermodynamic cycles related to energy conversion: Rankine, Otto, Diesel and Dual Cycles;
	ideal and real gases; compressibility factor; Gas mixtures. Modes of heat transfer, Steady and
	unsteady heat conduction, Thermal resistance, Fins, Free and forced convection, Correlations
	for convective heat transfer, Radiative heat transfer

Topics	IES Mechanical Engineering Syllabus
Engineering Materials	Basic Crystallography, Alloys and Phase diagrams, Heat Treatment, Ferrous, and Non-Ferrous
	Metals, Nonmetallic materials, Basics of Nano-materials, Mechanical Properties and Testing,
	Corrosion prevention and control
Design of Machine	Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram;
Elements	principles of the design of machine elements such as riveted, welded and bolted joints.
	Shafts, Spur gears, rolling and sliding contact bearings, Brakes and clutches, flywheels.
Manufacturing,	Failure concepts and characteristics-Reliability, Failure analysis, Machine Vibration, Data
Industrial and	acquisition, Fault Detection, Vibration Monitoring, Field Balancing of Rotors, Noise
	Monitoring, Wear and Debris Analysis, Signature Analysis, NDT Techniques in Condition

Maintenance	Monitoring. Metal casting-Metal forming, Metal Joining, Machining and machine tool
Engineering	operations, Limits, fits and tolerances, Metrology and inspection, computer Integrated
	manufacturing, FMS, Production planning and Control, Inventory control and operations
	research - CPM-PERT.
Mechatronics and	Microprocessors and Microcontrollers: Architecture, programming, I/O, Computer
Robotics	interfacing, Programmable logic controller. Sensors and actuators, Piezoelectric
	accelerometer, Hall effect sensor, Optical Encoder, Resolver, Inductosyn, Pneumatic and
	Hydraulic actuators, stepper motor, Control SystemsMathematical modelling of Physical
	systems, control signals, controllability and observability. Robotics, Robot Classification,
	Robot Specification, notation; Direct and Inverse Kinematics; Homogeneous Coordinates and
	Arm Equation of four Axis SCARA Robot
Engineering Mechanics	Analysis of System of Forces, Friction, Centroid and Centre of Gravity, Dynamics; Stresses
	and Strains-Compound Stresses and Strains, Bending Moment and Shear Force Diagrams,
	Theory of Bending Stresses- Slope and deflection-Torsion, Thin and thick Cylinders, Spheres.
Mechanisms and	Types of Kinematics Pair, Mobility, Inversions, Kinematic Analysis, Velocity and Acceleration
	A value of Dianan Mashaniana, CANA with write reasonation and extendation and acceleration
Iviachines	Analysis of Planar Mechanisms, CAIVIS with Uniform acceleration and retardation, cycloidal
	motion, oscillating followers; Vibrations –Free and forced vibration of undamped and
	damped SDOF systems, Transmissibility Ratio, Vibration Isolation, Critical Speed of Shafts.
	Gears – Geometry of tooth profiles, Law of gearing, Involute profile, Interference, Helical,
	Spiral and Worm Gears, Gear Trains- Simple, compound and Epicyclic; Dynamic Analysis –
	Slider – crank mechanisms, turning moment computations, balancing of Revolving &
	Reciprocating masses, Gyroscopes –Effect of Gyroscopic couple on automobiles, ships and
	aircraft, Governors.